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Figure 1. Our proposed VideoRF views dynamic radiance field as 2D feature video streams combined with deferred rendering. This
technique facilitates hardware video codec and shader-based rendering, enabling smooth high-quality rendering across diverse devices.

Abstract

Neural Radiance Fields (NeRFs) excel in photorealisti-
cally rendering static scenes. However, rendering dynamic,
long-duration radiance fields on ubiquitous devices remains
challenging, due to data storage and computational con-
straints. In this paper, we introduce VideoRF, the first ap-
proach to enable real-time streaming and rendering of dy-
namic human-centric radiance fields on mobile platforms.
At the core is a serialized 2D feature image stream repre-
senting the 4D radiance field all in one. We introduce a
tailored training scheme directly applied to this 2D domain
to impose the temporal and spatial redundancy of the fea-
ture image stream. By leveraging the redundancy, we show
that the feature image stream can be efficiently compressed
by 2D video codecs, which allows us to exploit video hard-
ware accelerators to achieve real-time decoding. On the
other hand, based on the feature image stream, we pro-
pose a novel rendering pipeline for VideoRF, which has spe-
cialized space mappings to query radiance properties ef-
ficiently. Paired with a deferred shading model, VideoRF
has the capability of real-time rendering on mobile devices
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thanks to its efficiency. We have developed a real-time in-
teractive player that enables online streaming and render-
ing of dynamic scenes, offering a seamless and immersive
free-viewpoint experience across a range of devices, from
desktops to mobile phones. Our project page is available at
https://aoliao12138.github.io/VideoRF/.

1. Introduction
Photorealistic Free-Viewpoint Video (FVV) of dynamic
scenes offers an immersive experience in virtual reality
and telepresence. Work involving Neural Radiance Fields
(NeRFs) has shown great potential in creating photorealis-
tic Free-Viewpoint Videos (FVVs). However, there are still
challenges in smoothly delivering and rendering FVVs us-
ing NeRFs on commonly used devices, similar to the ease of
watching online videos. The difficulty lies in reducing the
data capacity for transmitting and storing long sequences
and ensuring a low, mobile-compatible computational load.

Neural Radiance Field (NeRF) [39] surpasses traditional
3D reconstruction methods in photorealistic novel view
synthesis. Several works extend NeRF to dynamic scenes
by maintaining a canonical space and matching it implicitly
[10, 42, 48] or explicitly [34] to align with each frame’s live
space. However, their dependence on canonical space lim-
its effectiveness in sequences with large motions or topo-
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logical changes. Other methods introduce new represen-
tations like 4D feature grids [18] or temporal voxel fea-
tures [11], achieving impressive results on the scenes with
topological transformations. Yet, [11] struggles with rep-
resenting longer sequences owing to model capacity con-
straints, while [18] encounters streaming challenges due
to large storage needs. Recent efforts [26, 54, 65] focus
on compressing dynamic frames for streaming, but their
computational intensity limits mobile applicability. Con-
currently, on mobile devices, real-time rendering of static
scenes has been achieved by baking NeRF into mesh tem-
plates [1, 52, 75] or texture assets [50]. However, these
techniques fall short for dynamic scenes as their per-frame
representation becomes too bulky for real-time loading.
Moreover, while NeRF compression methods [51, 56, 65]
can be employed, they introduce decoding or rendering
overheads unsuitable for mobile platforms. Despite the ex-
istence of NeRF solutions for dynamic scenes and mobile
optimization, a cohesive approach that effectively addresses
both still poses a difficulty.

In this paper, we propose VideoRF – a novel neural mod-
eling approach that enables real-time streaming and render-
ing of human-centric dynamic radiance fields on common
mobile devices (see Fig. 1). Our key idea is to view the
4D feature volumes reconstructed from a dynamic scene
as a 2D feature image stream, which is friendly to video
codec. Each feature image records the densities and ap-
pearance features of one frame. We hence propose a ren-
dering pipeline for this representation. In this rendering
pipeline, VideoRF uses a set of mapping tables to connect
the 3D space with the 2D feature images. This allows for
O(1) density and feature retrieval from the images for ev-
ery 3D sample point in the space. To reduce the computa-
tional complexity of rendering, we adopt the deferred shad-
ing model [50] with a global tiny MLP to decode the inte-
grated feature vectors into pixel colors. All rendering oper-
ations here are low-cost and compatible with the fragment
shader model, making it possible to implement this render-
ing pipeline on various devices that have GPUs.

Second, we present a sequential training scheme to ef-
fectively generate the 2D feature image stream. Specifi-
cally, VideoRF adaptively groups frames by analyzing mo-
tion from the sequential data to ensure temporal stability
for mapping table generation. We deploy 3D and 2D Mor-
ton sorting techniques to improve spatial consistency in the
mapping. VideoRF contains spatial and temporal continu-
ity regularizers that are applied on the mapped 2D feature
images using the mapping table. This training strategy en-
forces the temporal and spatial redundancy to the 2D fea-
ture image stream. We show that our feature image stream
with spatiotemporal sparsity can be efficiently compressed
by off-the-shelf video codecs and reaches high compression
rates.

Moreover, based on these findings, we build a cross-
platform player based on VideoRF that can play FVVs in
real-time, supported by video hardware accelerators. In this
way, users can interactively drag, rotate, pause, play, fast-
forward, rewind, and jump to specific frames, providing a
viewing experience as seamless as watching online videos
on various devices, including smartphones, tablets, laptops,
and desktops which was unseen before.

To summarize, our contributions include:
• We propose VideoRF, a novel approach to enable real-

time dynamic radiance field decoding, streaming and ren-
dering on mobile devices.

• We present an efficient and compact representation,
which represents 4D radiance field into 2D feature stream
with low rendering complexity to support hardware video
codec and shader rendering.

• We introduce a training scheme to directly impose spatial-
temporal consistency on our 2D feature stream for effi-
cient compression.

2. Related work
Novel View Synthesis for Dynamic Scenes. Dynamic
scenes pose a greater challenge in achieving realistic view
synthesis results due to moving objects. One approach
is to reconstruct the dynamic scene and render the ge-
ometry from new viewpoints. The conventional RGB
[7, 23, 30, 36, 37, 49, 80] or RGB-D [9, 19–21, 41, 70, 71]
solutions have been extensively investigated. Mesh-based
neural network [5, 61, 68] techniques are effective for com-
pact data storage and can record view-dependent texture
[5, 68], but such methods heavily rely on geometry, espe-
cially perform poorly for topologically complex scenarios.

Many methods extend NeRF into the dynamic view syn-
thesis settings. Some methods [10, 15, 29, 31–33, 43, 48,
63, 69, 77, 79] handle spatial change directly conditions on
time and [14, 45, 46, 73, 82] use feature latent code to rep-
resent time information. However, they do not support the
streaming of long sequences due to the limited represen-
tation. Others learn spatial offsets from the live scene to
the canonical radiance field by using explicit voxel match-
ing [34], skeletal poses [25, 35, 44], deformed hashtable
[24] and deformed volume [22, 59, 60, 66, 72, 81]. While
these methods can successfully render dynamic scenes with
photo-realistic quality, their heavy reliance on the canonical
space makes these methods vulnerable to long sequences,
large motions, and topological alterations. Recently, several
methods using 4D planes [3, 13, 18, 53, 74], voxel grid [11],
Fourier representation [64], residual layers [38] or dynamic
MLP maps [47] to represent dynamic scene. However, the
inference computational complexity makes it difficult for
them to implement streaming and decoding on mobile de-
vices. Additionally, several methods such as [26, 54, 65]
have managed to facilitate the streaming of dynamic radi-
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Figure 2. Demonstration of our rendering. For each 3D sample
point, its density σ and feature f are fetched from the 2D feature
image through the mapping table M. Each point feature is first
volumetrically accumulated to get the ray feature f̃ and pass MLP
Φ to decode the ray color.

ance fields by reducing the capacity of each frame, but the
lack of general hardware acceleration makes it challenging
to represent dynamic scenes in real-time on mobile phones.

Cross Device Neural Radiance Field Rendering. Recent
works have demonstrated that static neural radiance fields
can be rendered on mobile devices. They achieve this by
directly converting the neural radiance field to mesh [58] or
using traditional texture to represent the scene. [1, 75, 78]
have endeavored to augment the capabilities of neural ren-
dering by employing mesh templates and feature texture,
[2, 52] facilitating the rendering process through fragment
shader to achieve surface-like rendering with similar ideas.
[62] represents neural radiance features encoded on a two-
layer duplex mesh for better rendering quality.

NeRF Acceleration and Compression. NeRF demon-
strates exceptional performance in generating images from
arbitrary viewpoints, but it suffers from slow rendering effi-
ciency. Some methods focus on integrating a compact struc-
ture with a simplified MLP, which reduces the complexity
of MLP calculations in traditional NeRFs. Key strategies
have been explored, including the employment of voxel grid
[26, 55], octrees [12, 64, 76], tri-planes [4], hashing encod-
ing [40], codebook [27, 56], tensor decomposition [6, 57]
to accomplish this. Using explicit structure makes training
and rendering faster, but it also means that the 3D structure
takes up more storage space.

Therefore, while methods such as CP-decomposition [6],
rank reduction [57], and vector quantization [56] manage to
attain modest levels of data compression, their application
remains confined to static scenes. Additionally, some ap-
proaches [8, 51, 65] opt for post-processing techniques, ini-
tially utilizing baseline methods to train a decent NeRF rep-
resentation, then special encoding and decoding schemes
are employed to reduce the storage space. However, these
kinds of methods are not hardware-friendly, the inference
process is computationally demanding and cannot support

real-time streaming on mobile devices. In contrast, our
VideoRF uses codec tailored training, hardware-friendly
decoding and shader rendering, which enables real-time dy-
namic radiance field for long sequences with large motion.

3. VideoRF Representation

To facilitate dynamic radiance field rendering on mobile de-
vices, we adopt a representation that aligns with the video
codec format and maintains low computational complexity
for shader-based rendering. We propose turning the 3D vol-
ume representation into a 2D formulation, coupled with a
highly efficient rendering pipeline.

In our approach, each frame of the radiance field is rep-
resented as a feature image I where the first channel stores
density and the remaining h channels store feature. As de-
picted in Fig. 2, given a 3D vertex position x, we retrieve
its density σ and feature f using the equation:

σ, f = I[M(x)], (1)

where M is the 3D-to-2D mapping table from Sec. 4.1.
This mapping table not only effectively excludes empty
space to reduce storage but also specifics mapping from
each non-empty 3D vertex to a corresponding 2D pixel. The
lookup operation is highly efficient, with a time complexity
of O(1), facilitating rapid and convenient queries. It’s worth
noting that our sequence of feature images is in a 2D format,
which is friendly to the video codec hardware.

For rendering, inspired by [17, 50], we use a deferred
rendering model. We first accumulate the features along the
ray:

f̃(r) =

ns∑
k=1

Tk(1− exp(−σkδk))fk,

Tk = exp

−
k−1∑
j=1

σjδj

 ,

(2)

where ns is the number of sample points along the ray r. σk,
fk, δk denotes the density, feature of the samples, and the
interval between adjacent samples respectively. The view-
dependent color of the ray is then computed using a tiny
global MLP Φ shared across the frames as:

C̃(r) = sigmoid
(
Φ
(
f̃(r),d

))
, (3)

where d is the view direction of the ray after positional en-
coding [39]. In this way, the computational burden is sig-
nificantly reduced as each ray requires only a single MLP
decoding which can be implemented in a shader for real-
time rendering on mobile devices.
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Figure 3. Overview of our video codec-friendly training. First, we apply our grid-based coarse training [55] to generate per-frame
occupancy grid Ot. Then, during baking, we adaptively group each frame and create a mapping table M for each group. Next, we
sequentially train each feature image It through our spatial, temporal and photometric loss. Finally, feature images are compressed into
the feature video streaming to the player.

4. Video Codec-friendly Training

In this section, we propose a training scheme, as depicted in
Fig. 3, to achieve a high compression rate by maintaining
spatial and temporal consistency. For spatial aspect, we in-
corporate 3D-2D Morton sorting to preserve 3D continuity
and apply a spatial consistency loss directly on 2D feature
images to enforce spatial coherence. On the temporal front,
we employ adaptive grouping, which allows frames within a
group to share mappings, thereby reducing temporal disrup-
tions, and temporal consistency loss, which serves to further
reinforce temporal coherence. These consistencies are cru-
cial which provide a stable and predictable layout for video
codecs.

4.1. Baking and Map Generation

Coarse stage pre-training. Given multiview images of
each frame, we first adopt an off-the-shelf approach [55]
to generate the explicit density grid Vt

σ for each frame t
independently. We then create a per-frame occupancy grid
Ot by masking in voxels whose opacity exceeds a certain
threshold γ. This coarse stage sets the foundation for our
subsequent adaptive grouping in the baking stage.

Adaptive group. Generating an independent mapping
table for each frame t could disrupt temporal continuity,
leading to increased storage requirements after video codec
compression. This issue arises because the same 3D point in
adjacent frames might map to vastly different 2D positions
on the feature image. On the other hand, uniformly apply-
ing a single mapping table across all frames could introduce
significant spatial redundancy. Considering that a 3D point
may only be occupied at sparse intervals, it could remain
underutilized for most of the duration, resulting in ineffi-
ciency. To balance these factors, we divide the sequence

into Groups of Frames (GOFs), maintaining a fixed resolu-
tion for our 2D feature image and adaptively determining
the number of frames in each group. For a set of consecu-
tive frames {i, i+ 1, . . . , i+ n}, we identify the maximum
frame number α such that the number of occupied voxels in
the union from i to α does not exceed our pixel limit θ:

argmaxα g

 α⋃
j=i

Oj

 ⩽ θ, (4)

where g() means the number of occupied grids in the union
occupancy grid. Then, we will set the frame i to frame α
as a GOF and frame α + 1 to be the start frame of a new
GOF. In this way, all the frames in the group share the same
mapping. The same 3D position within the group will be
mapped to the same 2D pixel location which keeps temporal
consistency and saves the storage.

Our grouping strategy, unlike the fixed feature grid
grouping in ReRF [65], is adaptive, aligning with our ob-
jectives. This flexibility allows frames within a group to
share a mapping table, optimized in size for a perfect bal-
ance between storage efficiency and maintaining temporal
continuity. On the other hand, the primary aim of ReRF
is to facilitate fast-seeking. Furthermore, our approach di-
verges from the per-frame occupancy grid of MLP-Maps
[47]. We employ a union occupancy grid to calculate the ef-
fective number of pixels for adaptive grouping, rather than
for speeding up rendering.

3D Morton sorting. After the union occupancy grid is
achieved, we apply Morton sorting to record its 3D spatial
continuity. Morton ordering [67], or Z-ordering, interleaves
the binary representations of spatial coordinates, ensuring
that spatially proximate entities remain adjacent in linear
space. As shown in Fig. 4(a), we apply 3D Morton sort-
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Figure 4. Illustration of our mapping table generation. We first
perform 3D Morton sorting (a) on each nonempty vertice and
group it into chunks Ci (b). Next, we lay out each chunk into
each block Bi of the feature image, arranged in 2D Morton order
(c) within it.

ing to the vertices based on their position coordinates of the
union occupancy grid. Vertices with a density below the
threshold γ are excluded. This process effectively main-
tains 3D spatial consistency in the ordering.

2D block partitioning and 2D Morton sorting. To pre-
serve the 3D spatial continuity within a 2D framework, we
employ 2D Morton sorting and partition the feature images
into blocks. This approach aligns with the block-wise com-
pression of frames in video codecs, where blocks with local
smoothness lead to more efficient storage. Specifically, we
first divide the feature image into N 8 × 8 blocks, denoted
as Bi, and correspondingly group the sorted vertices into N
8× 8 chunks, denoted as Ci, as illustrated in Fig. 4(b). For
each pixel p in a block Bi, we sort its relative position (u, v)
in 2D Morton order. As shown in Fig. 4(c), each chunk Ci

is then mapped to a block Bi, arranged in 2D Morton or-
der within the block, to form the mapping table M. This
2D Morton ordering ensures that sorted values in the 3D
Morton ordering are positioned closely within each feature
image block, facilitating efficient compression during the
transformation process.

4.2. Fine-grained Sequential Training

With the aid of our mapping table, we can sequentially train
our feature images within each group through spatial con-
sistency loss applied to 2D feature images and temporal
consistency loss between frames.

Spatial consistency loss. In video encoding, regions with
homogeneous characteristics demonstrate high compres-
sion efficiency. This efficiency stems from the minimal vari-
ation in pixel values within these areas, leading to a signifi-
cant reduction in high-frequency components post Discrete
Cosine Transform (DCT) within the video codec. Conse-
quently, these regions retain a higher proportion of low-
frequency components. Furthermore, the quantized coef-
ficients in such homogeneous regions are more likely to
contain a greater number of zero values, facilitating a more

compact data representation and reducing the overall data
volume. In order to enhance the homogeneity of our 2D
feature image, we introduce a total variance loss, Lspatial,
during our fine-grained training stage. For each channel of
the feature image I, we enforce its local smoothness by:

Lspatial =
1

|P|
∑
p∈V

(∆u(p) + ∆v(p)) , (5)

where P is the pixels of the feature image, ∆u(p) shorthand
for Manhattan distance between the feature value at pixel
p := (u, v) and the feature value at pixel (u + 1, v) nor-
malized by the resolution, and analogously for ∆v(p). By
increasing the spatial sparsity, the storage of feature videos
after video encoding is decreased at the same quality.

Temporal consistency loss. A naive per-frame training
scheme will disrupt temporal continuities by failing to in-
corporate inter-frame information and resulting in a high
bitrate. This is because the residuals between frames are
stored after entropy encoding. To optimize storage effi-
ciency, we focus on minimizing the differences in the fea-
ture space between the adjacent frames to reduce the en-
tropy. During our sequential training, we enhance inter-
frame similarities by regularizing the current feature im-
age with its predecessor, except for the initial frame of each
adaptive group. This is achieved by applying

Ltemporal = ∥It − It−1∥1, (6)

for each frame t in the group, ensuring small residuals be-
tween consecutive feature images. By employing tempo-
ral smoothness in this manner, we can further mitigate en-
tropy throughout the video codec process, thereby facilitat-
ing storage conservation.

Training objective. Our total loss function is formulated
as:

Ltotal = Lrgb + λsLspatial + λtLtemporal, (7)

where λs and λt are the weights for our regular terms and
Lrgb is the photometric loss,

Lrgb =
∑
r∈R

∥c(r)− ĉ(r)∥2, (8)

where R is the set of training pixel rays; c(r) and ĉ(r) are
the ground truth color and predicted color of a ray r respec-
tively.

4.3. VideoRF Player

Finally, we implement a companion VideoRF player to
stream and render dynamic radiance fields on mobile de-
vices. Given our feature streams, we quantize them into
uint8 format and use H.264 for video codec. Different from
[50], we save the mapping table in a 2D-to-3D format as an



Figure 5. Our VideoRF method generates results for inward-facing, 360◦ video sequences featuring human-object interactions with large
motion. The images in the last row illustrate our ability to implement variable bitrate in these sequences.

RGB image to conserve bitrate during streaming. Then, to
enable rapid rendering, we first use this mapping table to
recover a 3D volume. We employ a compute shader for ef-
ficient processing, segmenting the 512×512 mapping table
into 16×16 workgroups, each handling a 32×32 pixel sec-
tion. The highly parallel architecture of compute shaders
enables us to efficiently convert 2D features back into a
3D volume. For the rendering part, we implement it via a
fragment shader. For fast raymarching, we employ a multi-
resolution hierarchy of occupancy grids for each group to
skip empty space at different levels. We leverage matrix
multiplication in the shader to simulate our tiny MLP cal-
culation. These techniques increase the overall speed while
ensuring compact storage.

The VideoRF player marks a significant milestone, as
it first enables users to experience real-time rendering of
dynamic radiance fields of any length. Within this player,
users can drag, rotate, pause, play, fast forward/backward,
seek dynamic scenes, or switch between different resolu-
tions like watching online video, offering an extraordinary
high-quality free-viewpoint viewing experience. This ca-
pability also extends across a wide range of devices, from
smartphones and tablets to laptops and desktops, broaden-
ing the accessibility and applicability of dynamic radiance
fields.

5. Experimental Results

In this section, we evaluate our VideoRF on a variety of
challenging scenarios. We use the PyTorch Framework to
train the model on a single NVIDIA GeForce RTX3090.
Our new captured dynamic datasets contain around 80
views at the resolution of 1920 × 1080 at 30 fps. To
ensure the robustness of the algorithm, we also use the
ReRF dataset and the HumanRF dataset for result demon-
stration in Fig. 5. We can render images for immersive,
360◦ video sequences that capture human interactions with
objects, especially for large motion and long duration se-
quences. Please refer to the supplementary video for more
video results.

5.1. Comparison

To the best of our knowledge, our approach is the first real-
time dynamic radiance field approach that can decode and
render on mobile devices. Therefore, we compare to ex-
isting dynamic neural rendering methods, including ReRF
[65], HumanRF [18], TiNeuVox [11] and per-frame static
reconstruction methods like MeRF [50]. We use ReRF [65]
dataset and HumanRF [18] Actor3 sequence 1 for a fair
comparison, both in storage memory and image quality. As
shown in Fig. 6, though TiNeuVox [11] has small storage,



Figure 6. Qualitative comparison against dynamic scene reconstruction methods and per frame static reconstruction methods.

best second-best
Dataset Method PSNR↑ SSIM↑ LPIPS ↓ Size(MB)↓

ReRF

ReRF [65] 31.84 0.974 0.042 0.645
MeRF [50] 31.12 0.975 0.030 7.529

HumanRF [18] 28.82 0.900 0.069 2.800
TiNeuVox[11] 22.70 0.923 0.083 0.337

Ours 32.01 0.976 0.023 0.658

Actors-HQ

ReRF [65] 28.33 0.836 0.296 0.554
MeRF [50] 27.22 0.807 0.271 7.164

HumanRF [18] 28.98 0.888 0.151 2.286
TiNeuVox [11] 22.98 0.752 0.430 0.447

Ours 28.46 0.838 0.278 0.426

Table 1. Qualitative comparison against dynamic scene recon-
struction methods and per frame static reconstruction methods.

it faces the challenge of intensifying blurring effects as the
frame count rises. MeRF [50] suffers from the large stor-
age which is not suitable for dynamic scenes when stream-
ing and decoding for playing. HumanRF [18] though capa-
ble of representing dynamic scenes, also faces difficulties in
streaming and rendering on mobiles due to its computation
and storage load.

We also conduct a quantitative comparison using met-
rics such as the peak signal-to-noise ratio (PSNR), struc-
tural similarity index (SSIM), and the Learned Perceptual
Image Patch Similarity (LPIPS) as metrics shown in Tab.
1. For a fair comparison in our experiments, in the ReRF
dataset, we test the first 200 frames on the scene Kpop. We
use 6 and 39 as test views and the others as training views.
As for the HumanRF dataset, we apply the test methods
as referenced in HumanRF on the first 250 frames on Ac-
tor3, sequence 1. We utilize the values reported for Hu-
manRF and TiNeuVox methods directly from the HumanRF
study. In the ReRF dataset, which includes large motion
scenarios, we match the rendering quality of the standard
ReRF, while also maintaining a compact data storage size.
Meanwhile, in the HumanRF dataset with relatively small
motion, we achieve a rendering quality that is second only

Figure 7. Rate distortion curve. The rate distortion curve illus-
trates the efficiency of various components within our system. We
use different quantization factors to obtain the average rendering
quality at different capacities. Our full model stands out as the
most compact, allowing for flexible bitrate adjustments to meet
diverse storage needs.

to HumanRF, accomplished with the most efficient storage
utilization. Moreover, as indicated in Tab. 2, our method
significantly surpasses ReRF in rendering speed when ren-
dering the Kpop scene at an i7-12700F CPU and NVIDIA
RTX3090 GPU at the resolution of 1920 × 1080, even on
a tablet (iPad Pro with an M2 chip). It’s worth noting that,
our method is the only method that can provide both mobile
and dynamic rendering tasks. The existing dynamic recon-
struction methods like TiNeuVox [11], HumanRF [18] and
ReRF [65] all cannot effectively utilize hardware encoding
and decoding techniques, preventing them from being dis-
played on mobile devices, especially for the dynamic scene
of a long sequence.



Figure 8. Qualitative evaluation of different variations in our method at 600KB.

5.2. Evaluation

Ablation study. We analyze the impact of spatial consis-
tency, temporal consistency, Morton sorting, block storage,
and adaptive grouping on compression and rendering. In the
case of models that do not employ 3D and 2D Morton sort-
ing, spatial point data is sorted sequentially in row-major
order while employing 2D block-wise storage. For mod-
els not utilizing block storage, a 3D spatial Morton sort-
ing is applied, followed by storage in a row-major format
within the 2D feature space. For models without adaptive
grouping, the mapping table for each frame is calculated
only based on the occupancy grid of the current frame. As
illustrated in Fig. 7, our full model exhibits the best perfor-
mance in terms of rendering quality and storage efficiency.
By utilizing our modules, the quantization of residual fre-
quency coefficients becomes more precise, retaining more
information at the same bitrate. This results in less perfor-
mance loss when compressed to the same size compared
to the variations without them. While ReRF [65] exhibits
slightly better quality in the storage range of 700-800KB,
our method consistently demonstrates higher PSNR across
most capacity ranges and supports mobile rendering. Fig.
8 shows that under a 600KB storage limit, our complete
model yields more realistic results with less compression
blur.

Cross device runtime analysis. We evaluate the runtime
breakdown analysis of VideoRF as detailed in Tab. 2. Our
experimental setup includes a Desktop with an i7-12700F
CPU and NVIDIA RTX3090 GPU, a Laptop with an i5-
1135G7 CPU and Integrated GPU, a Tablet (iPad Pro) with
an M2 chip, and a phone (iPhone 14 Pro) with an A16
Bionic chip. For Desktops and Laptops, we employ a
Python code base along with ModernGL. Meanwhile, for
Tablet and Smartphone, the VideoRF player is developed
using Swift and Metal. It’s worth noting that the video de-
coding part primarily relies on CPU performance, while the
rendering part mainly depends on GPU performance. These
two parts operate asynchronously and simultaneously. The
other part mainly covers operations such as data conver-
sion between the GPU and CPU. Our results demonstrate
that VideoRF allows users to enjoy free-view videos at high

Method Device FPS Decoding Rendering Others
Ours Desktop 116 5.548 ms 3.602 ms 3.072 ms
Ours Laptop 25 10.54 ms 29.31 ms 11.69 ms
Ours Tablet 40 3.822 ms 23.86 ms 1.150 ms
Ours Phone 23 13.38 ms 40.82 ms 3.003 ms
ReRF Desktop 4 45.74 ms 194.7 ms —-

Table 2. Runtime analysis across different devices when process-
ing the same HD image with a resolution of 1920 × 1080.

frame rates on multiple devices, providing an experience
that rivals the smoothness of watching 2D videos on plat-
forms such as YouTube.

6. Conclusion

We have presented VideoRF, a novel approach enabling
real-time streaming and rendering of dynamic radiance
fields on mobile devices. Our VideoRF innovatively pro-
cesses feature volumes as 2D feature streams and adopts
deferred rendering to effectively leverage classical video
codecs and rasterization pipelines. Our video codec friendly
training scheme is implemented on 2D feature space to en-
hance spatial-temporal consistency for compactness. Ad-
ditionally, our tailored player supports seamless streaming
and rendering of dynamic radiance fields across a range of
devices, from desktops to smartphones. Our experiments
demonstrate its capability for compact and effective dy-
namic scene modeling. With the unique ability of real-time
rendering of dynamic radiance fields on mobile devices, we
believe that our approach marks a significant step forward in
neural scene modeling and immersive VR/AR applications.
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VideoRF: Rendering Dynamic Radiance Fields as 2D Feature Video Streams

Supplementary Material

8. Training Details for VideoRF

8.1. Coarse Stage Pre-training and Baking

Given a long-duration multi-view sequence, we initially
adopt the approach from DVGO [55] to generate an ex-
plicit density volume grid Vσ and color feature grids Vc

representation for each frame t. Following ReRF [65], we
employ a global MLP Φc during this coarse stage training.
This MLP comprises a single hidden layer with 129 chan-
nels, and we set the color feature dimension at h = 12.
Throughout the training, we incrementally upscale the vol-
ume grid, from (125×125×125) → (150×150×150) →
(200×200×200) → (250×250×250), after reaching the
training step 2000, 4000 and 6000, respectively. For loss
calculation, we utilize both the photometric MSE loss and
the total variation loss on Vσ , expressed as:

Lrgbcoarse
=

∑
r∈R

∥c(r)− ĉ(r)∥2, (9)

LTVcoarse =
1

|Vσ|
∑

v∈Vσ

√
∆2

xv +∆2
yv +∆2

zv, (10)

Lcoarse = Lrgbcoarse
+ λTVLTVcoarse , (11)

where λTV = 0.000016. Here, R represents the set of train-
ing pixel rays, with c(r) and ĉ(r) denoting the actual and
predicted colors of a ray r, respectively. ∆2

x,y,zv signifies
the squared difference in the voxel’s density value. Notably,
the total variation loss is activated only during the training
iterations from 1000 to 12000. For optimization, we uti-
lize the Adam optimizer for training 16000 iterations with
a batch size of 10192 rays. The learning rates for Vσ , Vc

and global MLP are 0.1, 0.11 and 0.002, respectively.
Once we obtain the density grid Vt

σ for each frame t in
the coarse training phase, we generate a per-frame occu-
pancy grid Ot by retaining voxels with a density above the
threshold γ = 0.003. During our adaptive grouping stage,
we set the pixel limit to θ = 512× 512.

8.2. Fine-grained Sequential Training

After creating the mapping tables, we proceed to fine-
grained sequential training within each group. At this stage,
we also introduce a global tiny MLP Φf designed for effi-
cient rendering on mobile platforms. This minimal MLP
Φf consists of only one hidden layer with 16 channels, and
we maintain the color feature dimension h at 12. Similar
to the coarse stage, we progressively upscale the volume
grid during training, moving from (125 × 125 × 125) to

Figure 9. Our VideoRF facilitates dynamic radiance field render-
ing on ubiquitous devices, from desktops to mobile phones.

(150 × 150 × 150), then to (200 × 200 × 200), and fi-
nally to (250 × 250 × 250), corresponding to the training
steps at 2000, 4000, and 6000, respectively. For loss cal-
culations, we employ both the photometric MSE loss and
the total variation loss on the density volume Vσ , as well
as spatial consistency loss and temporal consistency loss on
the feature image I:

Lrgbfine
=

∑
r∈R

∥c(r)− ĉ(r)∥2, (12)

LTVfine =
1

|Vσ|
∑

v∈Vσ

√
∆2

xv +∆2
yv +∆2

zv (13)

Lspatial =
1

|P|
∑
p∈V

(∆u(p) + ∆v(p)) , (14)

Ltemporal = ∥It − It−1∥1, (15)

Lfine = Lrgbfine
+ λTVLTVfine + λsLspatial + λtLtemporal,

(16)
where λTV = 0.000016, λs = 0.0001 and λt = 0.0001. The
total variation loss is specifically activated during training
iterations 1000 to 12000. We continue to use the Adam
optimizer for 16000 iterations with a batch size of 10192
rays. The learning rates for Vσ , Vc, and the global MLP
are set to 0.1, 0.11, and 0.002, respectively.

9. Implementation Details for VideoRF Player
During the codec process of our player, the 2D density map
and each feature map channel are considered as single chan-
nel images. These images are normalized and quantized
into 8-bit depth. The H.264 encoder converts these im-
ages into the yuvj444p color space for hardware compati-
bility. During decoding, the data is converted back from the



best second-best
Method Metric 20 50 100 250 500 1000

HumanRF
↓ LPIPS 0.120 0.138 0.135 0.151 0.155 0.160
↑ PSNR 31.02 30.26 30.25 28.98 29.50 29.19
↑ SSIM 0.893 0.888 0.896 0.888 0.885 0.881

TiNeuVox
↓ LPIPS 0.352 0.298 0.406 0.430 0.436 0.452
↑ PSNR 27.51 26.62 24.13 22.98 22.30 21.28
↑ SSIM 0.782 0.791 0.760 0.752 0.751 0.747

NDVG
↓ LPIPS 0.240 0.281 0.354 0.435 0.453 0.481
↑ PSNR 28.76 25.83 23.13 21.17 20.05 17.83
↑ SSIM 0.841 0.812 0.763 0.731 0.724 0.692

HyperNeRF
↓ LPIPS 0.233 0.250 0.275 0.322 0.374 0.388
↑ PSNR 25.75 26.53 25.96 24.85 23.29 23.04
↑ SSIM 0.827 0.818 0.800 0.777 0.758 0.761

NeuralBody
↓ LPIPS 0.288 0.333 0.354 0.368 0.396 0.429
↑ PSNR 27.51 25.88 27.18 25.30 24.81 25.68
↑ SSIM 0.804 0.777 0.739 0.762 0.745 0.668

TAVA
↓ LPIPS 0.261 0.303 0.341 0.410 0.467 0.504
↑ PSNR 28.47 26.93 25.83 24.28 23.13 22.21
↑ SSIM 0.820 0.801 0.782 0.749 0.721 0.704

MeRF
↓ LPIPS 0.278 0.276 0.259 0.271 0.272 0.263
↑ PSNR 28.24 28.19 27.24 27.22 27.31 27.68
↑ SSIM 0.783 0.791 0.815 0.807 0.805 0.814

ReRF
↓ LPIPS 0.297 0.296 0.297 0.296 0.292 0.294
↑ PSNR 28.69 28.51 28.55 28.33 28.12 27.73
↑ SSIM 0.834 0.828 0.827 0.836 0.836 0.841

Ours
↓ LPIPS 0.276 0.285 0.283 0.278 0.274 0.275
↑ PSNR 29.14 28.79 28.81 28.46 28.50 28.32
↑ SSIM 0.840 0.835 0.830 0.838 0.840 0.844

Table 3. Quantitative comparison on long-duration sequence. We
evaluate on the Actor 3, Sequence 1 of the Actors-HQ Dataset.

yuvj444p color space to single-channel images with 8-bit
depth. Meanwhile, we adopt a multi-resolution occupancy
grid to bypass empty 3D spaces at various levels. This
approach significantly reduces unnecessary network infer-
ences during the ray marching process. The largest occu-
pancy grid is derived from max-pooling the full-resolution
binary mask. Each subsequent grid is designed to be half the
resolution of its predecessor. For instance, considering our
full-resolution binary mask is of size 288×288×288, our
multi-resolution occupancy grids follow suit with sizes of
144×144×144, 72×72×72, 36×36×36, 18×18×18, and
9×9×9.

10. Additional Experiments
As illustrated in Fig. 9, our method can enable dynamic
radiance field rendering on a wide range of devices, includ-
ing desktops (an i7-12700F CPU and NVIDIA RTX3090
GPU), laptops (an i5-1135G7CPU and Integrated GPU),
tablets (iPad Pro, an M2 chip) and mobile phones (iPhone
14 Pro, an A16 Bionic chip).
Long-duration dynamic scenes. Following the approach
in HumanRF [18], we assess performance on a long-
duration sequence (Actor3, sequence1, 1000 frames) from
the Actors-HQ dataset. We compare our method with ReRF

Figure 10. Qualitative comparison on the long-duration sequence
against recent dynamic scene reconstruction methods and per
frame static reconstruction methods.

Components Size(KB)
Feature Images 661.62
3D to 2D Mapping Table 2.58
Occupancy Images 2.18
MLP Parameters 3.40
Total Size 669.78

Table 4. Storage of different components. The result is averaged
over a sequence of Kpop scene from ReRF [65] dataset.

[65] and MeRF [50] through per-frame static reconstruc-
tion in Fig. 10. Our method keeps a small storage to en-
able streaming while maintaining a high rendering quality.
We adopt the testing methods outlined in HumanRF. The
performance metrics for HumanRF [18], TiNeuVox [11],
NDVG [16], HyperNeRF [43], NeuralBody [45], TAVA
[28] are directly sourced from the HumanRF publication.
As shown in Fig. 10 and Tab. 3, our approach demonstrates
its capability to sustain high photorealism which is only
second to HumanRF throughout long-duration sequences.
Note that, our VideoRF is the only method to enable ren-
dering dynamic scenes on mobile platforms.

Storage of different components analysis. We present
the storage requirements of each VideoRF component in
Tab. 4. This encompasses the average file sizes for sev-
eral key elements: the feature images for model detail, 3D-
to-2D mapping table, occupancy images used to efficiently
skip over empty spaces, and MLP parameters for the neu-
ral network. Note that our model’s total average size is
a mere 669.78KB. This compact representation facilitates
rapid streaming across various devices.

11. Limitation and Future Work

As the first trial to enable a real-time dynamic radiance field
approach capable of decoding and rendering on mobile de-
vices, our approach presents certain limitations. On aver-
age, training each frame takes approximately 20 minutes
using a single NVIDIA RTX3090 GPU. This includes about



5 minutes for coarse training, less than 1 second for the
baking stage, and around 14 minutes for the fine-grained
sequential training. Fortunately, our coarse training stage
can be parallel for each frame, and fine-grained sequential
training can be parallel across groups. Consequently, with
a setup of 8 RTX3090 GPUs, the training time can be re-
duced to approximately 3 minutes per frame. It should be
noted that once a sequence has been trained and encoded,
users as content consumers can directly use it, and the train-
ing cost is transparent to the users. Therefore, on a practical
application level, our method can provide a smooth experi-
ence on multiple platforms for users. Faster training speed
is indeed important for content creators, and this remains an
area for our future work. Additionally, our method currently
lacks support for temporal interpolation, signifying another
direction for future exploration.
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